Skip to main content
Fig. 1 | 3D Printing in Medicine

Fig. 1

From: Method to simulate distal flow resistance in coronary arteries in 3D printed patient specific coronary models

Fig. 1

Model development process. a CCTA scans of the heart tissue and the three main coronary arteries were imported into Vital Images cardiac analysis application. The coronary arteries were segmented separately from the calcification using thresholding and contouring methods. b A stereolithographic [30] file was exported from Vital Images and imported into Autodesk Meshmixer and segmentation errors were removed. c Cylindrical meshes were appended to the aortic root and the diseased coronary artery for future pressure sensor connections. d The aortic root was extended at both the inlet and the outlet. e Vessel branches were extended through each of the three chambers and a plane cut was administered at the vessel outlets for parallel ends. f A 2 mm wall was generated and the lumen was hollowed out. g The calcification was solidified and subtracted from the vasculature. h A three-chamber support structure was imported into Autodesk Meshmixer. i Then model and support structure are aligned and ready to be printed. j The model is 3D printed, cleaned, and ready to be attached to a flow loop

Back to article page