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Abstract

Background: Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded
dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group
on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications.

Methods: A structured literature search was conducted to identify all relevant articles using 3D printing technology
associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted
by the authors and graded according to published guidelines.

Results: Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care;
cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease,
complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and
mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac
trauma.

Conclusions: Adoption of common clinical standards regarding appropriate use, information and material
management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This
consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will
provide a reference for clinical standards of 3D printing for adult cardiac indications.

Keywords: 3D printing, Appropriateness, Guidelines, Quality, Radiology, Additive Manufacturing, Anatomic Model,
Adult Cardiology, Left Atrial Appendage, Transcatheter Aortic Valve Replacement

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Alia4@ucmail.uc.edu
1Department of Radiology, University of Cincinnati Medical Center,
Cincinnati, OH, USA
Full list of author information is available at the end of the article

Ali et al. 3D Printing in Medicine            (2020) 6:24 
https://doi.org/10.1186/s41205-020-00078-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s41205-020-00078-1&domain=pdf
http://orcid.org/0000-0001-6541-8991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Alia4@ucmail.uc.edu


Background
In 2018, the RSNA 3D printing SIG published guidelines
that include medical 3D printing appropriateness [1].
Those guidelines include 3D printing for patients with
congenital heart disease. Medical 3D printing is per-
formed for a variety of adult cardiac indications, but
without evidence-based appropriate use criteria (AUC).
The purpose of this document is to bridge the large un-
met need to identify, vet, vote and publish appropriate-
ness recommendations for 3D printing of adult cardiac
indications.

Methods
The Special Interest Group has initiated quality and
safety scholarship to identify those clinical situations for
which adult cardiac 3D Printing is considered usually
appropriate, maybe appropriate and rarely appropriate as
a representation of the data contained in a medical im-
aging examination. This document highlights appropri-
ateness of adult cardiac 3D printing for clinical
utilization, research, scientific, and informational pur-
poses. This work is loosely modeled after the American
College of Radiology Appropriateness Criteria® [2], in
that the guidelines committee uses an evidence-based
approach at scoring. Consensus among members is used
when there is a paucity of evidence. Strength of evidence
is determined by literature review.
The SIG Guidelines Chairperson oversees the ratings

via a vote among Special Interest Group members who
attend in-person meetings. The results of the ratings fol-
low the following 1–9 format (with 9 being the most
appropriate):

1–3, red, rarely appropriate: There is a lack of a clear
benefit or experience that shows an advantage over
usual practice.
4–6, yellow, maybe appropriate: There may be times
when there is an advantage, but the data are lacking, or
the benefits have not been fully defined.
7–9, green, usually appropriate: Data and experience
shows an advantage to 3D printing as a method to
represent and/or extend the value of data contained in
the medical imaging examination.

Clinical scenarios were organized by two major cardio-
vascular treatises to (a) ensure an exhaustive, structured
English language PubMed literature search (Add-
itional file 1) performed October 2019, and (b) generate
a document following the typical format of an Appropri-
ate Use Criteria (AUC), including a structure using
standard categories of cardiovascular disease [3, 4]. For
each category, from the pool of total results, the number
of publications considered “relevant results” was curated
by consensus between physicians with expertise in 3D

printing and cardiovascular care. 3D printing as an educa-
tional tool was not grouped in an individual category; in-
stead, its value was considered with respect to individual
clinical scenarios. Relevant publications which were not re-
trieved by the structured PubMed search were manually
entered into the appropriate categories and indicated as
such (Additional file 1). The following categories were ex-
cluded because they were considered outside the project
scope (Virtual & augmented reality, Bioprinting, Molecular
biology, Genetics, Molecular imaging, Diabetes, Endocrin-
ology, and Thrombosis) or covered elsewhere. While this
document addresses adult cardiac conditions, it does not
address congenital heart disease in the adult. Cardiac 3D
printing review articles were not considered in determining
final appropriateness ratings [5–19]. All final components
of this section were vetted and approved by vote of Special
Interest Group members face-to-face at the 2019 Annual
Meeting of the Radiological Society of North America (De-
cember 2, 2019, Chicago, IL, USA). In addition, all included
studies [20–143] were graded with a strength of evidence
assessment (Additional file 2) according to the ACR Appro-
priateness Criteria® Evidence Document [144].

Results
This section provides evidence-based guidelines, supple-
mented by expert opinion when there is a paucity of
peer-review data, to define and support the use of 3D
printing for patients with adult cardiac disease [Table 1].
A total of 135 articles published between February 2007
and October 2019 were ultimately included in the evi-
dence base (Additional file 1). The citations included in
forming the appropriateness criteria and the strength of
evidence assessment are presented in Additional files 1
and 2, respectively.

Discussion
Cardiac fundamentals
3D printed anatomic models provide a unique avenue
for the study of complex hemodynamic function. Several
research methods study cardiac hemodynamics using a
3D printed model [20–27], but none are applied clinic-
ally. No clinical applications exist on cardiac pathology
or resuscitation.

Perioperative and intraoperative care
A single study evaluated the feasibility of 3D printed
models for evaluating flow dynamics extracorporeal cir-
culation [21]; however, this study was not for direct use
in patient care.

Coronary disease and ischemic heart disease
Acute myocardial infarction is a life threatening cardiac
emergency with significant associated morbidity and
mortality [145]. Lead time for 3D segmentation and
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Table 1 Appropriateness Ratings for Adult Cardiac Indications

Clinical Condition Rating References

Cardiac Fundamentals

Cardiovascular Pathology 1 -

Cardiovascular Physiology 4 [20–27]

Electrocardiography 1 -

Cardiac Resuscitation 1 -

Perioperative and Intraoperative Care

Extracorporeal Circulation 2 [21]

Coronary Disease and Ischemic Heart Disease

Coronary Artery Disease and Myocardial Infarction 7 [22–32]

Coronary Artery Fistula 5 [33–35]

Coronary Artery Aneurysm 5 [36]

Coronary Artery Bypass 3 -

Post-Surgical Infarction 1 -

Atherosclerosis 4 -

Chest pain, angina 1 -

Complications of myocardial Infarction

Left ventricular aneurysm 6 -

Post infarct ventricular septal defect 7 [37]

Myocardial rupture, acute 1 -

Myocardial rupture, chronic 4 -

Left ventricle pseudoaneurysm 5 [38]

Aortic Valve Disease

Transcatheter aortic valve replacement 9 [20, 39–59]

Surgical Aortic valve replacement 5 [60–62]

Mitral Valve Disease

Transcatheter Mitral Valve Replacement 9 [63–81]

Surgical Mitral Valve Replacement 7 [82–89]

Tricuspid Valve Disease

Tricuspid valve repair/replacement 7 [90–95]

Pulmonic Valve Disease

Pulmonary valve repair/replacement 7 [96–98]

Cardiac Arrhythmias

Cardiac Arrhythmia/atrial fibrillation 6 [99, 100]

Cardiac Pacing 6 [101, 102]

Cardiac Neoplasm

Cardiac Tumors 7 [103–110]

Cardiac Transplant and Mechanical Circulatory Support

Cardiac transplant 7 [111]

Left Ventricular Assist device 7 [112–114]

Total Artificial Heart 3 -

Heart Failure

Heart Failure 2 -

Preventative Cardiology

Blood pressure disorders (hypertension, hypotension) 1 -
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printing precludes the availability of anatomic models
for real time procedural planning percutaneous interven-
tion. As such, there are minimal results for the use of
3D printed models for myocardial infarction. Several au-
thors assess the feasibility of 3D printed models for
studying coronary arterial flow dynamics, but the results
were not directly applied to patient care [22–27]. There
are several published case reports of 3D printed models
used in procedural planning for coronary artery
aneurysm and fistula repair [33–36].

Complications of myocardial infarction
Complications of myocardial infarction may require sur-
gical management, as in the single case reports of a left
ventricular pseudoaneurysm and post infarct ventricular
septal defect, where a model was used for procedural
planning [37, 38].

Valve disease
Paravalvular leak is a potentially life-threatening compli-
cation of transcatheter valve replacement. Although no
large-scale prospective studies have been performed,
there is growing body of case reports, suggesting de-
creased incidence of paravalvular leak and improved out-
comes for transcatheter aortic and mitral valve
replacement planned with the use of a 3D printed ana-
tomic model [20, 39–59, 63–81]. Complicated surgically
placed aortic and mitral valve replacements, as well as
pulmonary or tricuspid valves, may also benefit from
anatomic models [60–62, 82–98].

Cardiac arrhythmias
Irregular heart rhythms refractory to medical therapy
may require cardiac ablation or pacemaker placement
for definitive therapy. Published uses of anatomic models
include case reports for procedural planning in cases
with complex anatomy [99–102].

Cardiac transplant and mechanical circulatory support
Cardiac transplantation is indicated in patients with
end-stage heart failure who are symptomatic, despite

optimization of medical therapy. Approximately 3200
transplantations are performed annually in the United
States [146]. Anatomic models can potentially reduce
operative time and outcomes for this complex surgical
procedure. To date, there is only a single case report de-
scribing the use of a 3D printed model in an adult re-
quiring a surgically challenging cardiac transplant with
congenital heart disease [111].
Left ventricular assistive devices (LVAD) are a tempor-

izing procedure for patients pending definite cardiac
transplantation. An anatomic model was used to guide
cannula placement and trabeculae resection in a single
case report for LVAD placement [113].

Heart failure
Heart failure portends a wide variety of causes and is
usually managed with medical therapy preceding defini-
tive cardiac transplantation. As such, no published arti-
cles describe the utility of 3D models for heart failure.

Preventative cardiology
Patients with atrial fibrillation carry increased risk for
stroke and a large meta-analysis of left atrial appendage
closure demonstrates noninferiority compared with
anticoagulation in patients with nonvalvular atrial fibril-
lation [147]. Growing evidence suggests superior out-
comes with device sizing guided by an anatomic model
[115–131].
There is no published evidence for the utility of ana-

tomic models in the management of blood pressure
disorders.

Cardiac and pericardial disease
Accurate septal myectomy is the determinant of out-
comes in surgical management of hypertrophic obstruct-
ive cardiomyopathy. Anatomic models can help to
achieve superior intraventricular septum resection vol-
ume and shape [133–143].
Limited surgical options exist for dilated cardiomyop-

athy, restrictive cardiomyopathy, infectious or inflamma-
tory conditions of the heart or pericardial disease. As

Table 1 Appropriateness Ratings for Adult Cardiac Indications (Continued)

Clinical Condition Rating References

Left atrial appendage occlusion 9 [115–132]

Cardiac and Pericardial Disease

Hypertrophic Cardiomyopathy 9 [133–143]

Dilated and restrictive cardiomyopathy 5 -

Infectious and inflammatory conditions of the heart 3 -

Pericardial Disease 4 -

Cardiac Trauma

Cardiac trauma 1 -
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such, there are no published data on the use of anatomic
models in these conditions.

Cardiac trauma
Blunt cardiac trauma may result in myocardial contusion
with more severe blunt or penetrating trauma often
resulting in exsanguination, pericardial tamponade or
death. Treatable serious cardiac trauma requires resusci-
tation and emergent surgical management, thereby pre-
cluding the use of a 3D printed anatomic model due to
the necessary segmentation and printing time.

Conclusion
This document provides initial appropriateness recom-
mendations for 3D printing in adult cardiac pathology.
Ratings used available clinical evidence primarily from
structured searches plus expert opinion when there is a
paucity of evidence, recognizing that sparse data man-
dates that individual opinions can weigh heavily on ap-
propriateness recommendations [148]. AUC as defined
in the United States by the Centers of Medicare and Me-
dicaid include multidisciplinary society input [149]. One
limitation of the current SIG recommendations is that
additional expert opinion, in this case from practicing
cardiologists and cardiac surgeons, is lacking. This is an
important gap, particularly as AUC and related docu-
ments move towards the peer-review literature [150,
151]. Adoption of common clinical standards regarding
appropriate use, information and material management,
and quality control are needed to ensure the greatest
possible clinical benefit from 3D printing. It is antici-
pated that this consensus guideline document, created
by the members of the RSNA 3D printing Special Inter-
est Group, will provide a reference for clinical standards
of 3D printing. The document will be periodically re-
fined, based on expanding clinical applications and
growing medical literature.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s41205-020-00078-1.

Additional file 1:. Supporting evidence obtained through structured
PubMed searches. For each category, from the pool of total results, the
number of publications considered “Relevant results” was curated by
consensus between physicians with expertise in 3D printing and
cardiovascular care. Relevant publications which were not retrieved by
the structured PubMed search were manually entered into the
appropriate categories and indicated accordingly.

Additional file 2:. Grading of each included study with a strength of
evidence assessment according to ACR Appropriateness Criteria Evidence
Document [144]. Studies were categorized as either primarily diagnostic
(Dx), therapeutic (Tx), or both (Dx and Tx) along with a designation of
observational, experimental, or review/other category. The review/other
category is designated for studies that did not meet the definitions the
ACR Evidence Document [144] for observational or experimental studies.
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