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Abstract 

Background:  3D printing (3DP) has enabled medical professionals to create patient-specific medical devices to 
assist in surgical planning. Anatomical models can be generated from patient scans using a wide array of software, 
but there are limited studies on the geometric variance that is introduced during the digital conversion of images 
to models. The final accuracy of the 3D printed model is a function of manufacturing hardware quality control and 
the variability introduced during the multiple digital steps that convert patient scans to a printable format. This study 
provides a brief summary of common algorithms used for segmentation and refinement. Parameters for each that 
can introduce geometric variability are also identified. Several metrics for measuring variability between models and 
validating processes are explored and assessed.

Methods:  Using a clinical maxillofacial CT scan of a patient with a tumor of the mandible, four segmentation and 
refinement workflows were processed using four software packages. Differences in segmentation were calculated 
using several techniques including volumetric, surface, linear, global, and local measurements.

Results:  Visual inspection of print-ready models showed distinct differences in the thickness of the medial wall of the 
mandible adjacent to the tumor. Volumetric intersections and heatmaps provided useful local metrics of mismatch 
or variance between models made by different workflows. They also allowed calculations of aggregate percentage 
agreement and disagreement which provided a global benchmark metric. For the relevant regions of interest (ROIs), 
statistically significant differences were found in the volume and surface area comparisons for the final mandible and 
tumor models, as well as between measurements of the nerve central path. As with all clinical use cases, statistically 
significant results must be weighed against the clinical significance of any deviations found.

Conclusions:  Statistically significant geometric variations from differences in segmentation and refinement algo-
rithms can be introduced into patient-specific models. No single metric was able to capture the true accuracy of the 
final models. However, a combination of global and local measurements provided an understanding of important 
geometric variations. The clinical implications of each geometric variation is different for each anatomical location and 
should be evaluated on a case-by-case basis by clinicians familiar with the process. Understanding the basic seg-
mentation and refinement functions of software is essential for sites to create a baseline from which to evaluate their 
standard workflows, user training, and inter-user variability when using patient-specific models for clinical interven-
tions or decisions.
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Introduction
Many clinicians are beginning to use 3D printing 
(3DP), a form of additive manufacturing (AM), to 
make anatomic models for surgical planning, patient 
education, and more [1–3]. Over the last decade, 
traditional manufacturers have used 3DP to fabricate 
patient-specific medical devices [4] and the breadth of 
medical image segmentation algorithms has evolved 
extensively [5–7]. However, the more recent trend is 
for health care systems to bring 3D printing capabilities 
within the walls of the hospital at the point of care. With 
increased implementation at the point of care, health 
care facilities need to develop methods that ensure these 
devices are safe and do not increase risk to the patient. In 
December 2021, the US Food and Drug Administration 
(FDA) released a discussion paper on the types of 3DP 
activities projected to be undertaken at the point of 
care and how they might be regulated [8, 9]. Common 
use cases include patient-specific implants, surgical 
cutting guides, and anatomic models [10–13]. Anatomic 
models may improve surgical outcomes and provide 
tactile stimulus during surgical planning [14, 15], are 
the digital base of patient-specific surgical guides, and 
are the most widespread use case of 3DP in healthcare 
facilities. Anatomical models may be perceived to have a 
lower risk compared to cutting guides and implants, but 
they are still considered medical devices [16] and point of 
care manufacturers must ensure that these models meet 
clinical requirements for safety and efficacy. This takes 
experience and a systematic approach developed from 
understanding critical attributes of the digital design and 
fabrication process.

Converting volumetric medical imaging data sets 
into a 3D printable format involves many steps: a digi-
tal pipeline (Fig. 1), where software algorithms are used 
to isolate anatomic regions of interest (ROI) (referred 

to as segmentation), converting the ROI volume to a 
surface mesh, and cleaning up edges or errors (referred 
to as smoothing) [17].Many algorithms and methods 
have been developed to help users identify boundaries 
between complex anatomic regions in medical images 
by automating segmentation and then increasing accu-
racy through refining processes. These processes can 
have clinically relevant effects on the final product, 
depending on the ROI’s important features and how the 
algorithms handle them. Knowledge of key algorithms 
and parameters can help a user to determine how the 
software itself will affect the accuracy of the anatomic 
model and, ultimately, patient safety, irrespective of 
user variability or other factors.

Many studies have identified absolute differences 
in accuracy between programs for specific software, 
[15, 18], described 3D printing workflows for differ-
ent applications [19–21], and discussed printing best 
practices [22, 23]. In this paper, the behaviors of dif-
ferent mathematical algorithms used in ROI segmen-
tation and refinement are reviewed to highlight key 
features that can affect the transformation of medical 
images into 3D printable models. Next, these concepts 
are synthesized and illustrated with a real-world clini-
cal case segmented using four different software pack-
ages that use various algorithms for segmentation and 
refinement, including FDA cleared and noncleared 
software that are either proprietary or open-source. 
Finally, several metrics are used to quantify local and 
global geometric variation in 3D models introduced 
from software workflows. This information provides a 
framework and tool to assist engineers and clinicians 
in evaluating and implementing their own processes. 
The comparison metrics used here can be extended and 
repeated with other software programs and workflows 
not described here.

Keywords:  Patient-specific anatomical model, 3D printing, Geometric variation, Medical image segmentation, 
Segmentation variation, Algorithms, Hospital, Point of care

Fig. 1  Basic workflow for processing patient image volumes into 3D printable models
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Background: image acquisition and representation 
of digital anatomy for 3D printing
Volumetric clinical imaging data sets (e.g. computed 
tomography (CT) and magnetic resonance imaging 
(MRI)) are typically the source data for 3DP models. 
These data sets are comprised of volumetric pixels, 
more commonly referred to as voxels. Slice thickness (z)
and pixel size (xy) are a function of scanner hardware 
parameters, assigned field of view, and matrix size; 
they affect the overall size and uniformity (isotropy) 
of voxels. For the same exposure, larger voxels have a 
higher signal to noise ratio, but at the cost of decreased 
spatial resolution and increased volume-averaging from 
adjacent structures co-located within a given voxel [24–
28]. Imaging protocols optimized for creation of patient 
specific 3D models must weigh these trade-offs, and 
additionally consider contrast requirements, timing, and 
overall patient positioning; these 3D printing optimized 
protocols may be different than standard clinical imaging 
protocols used for diagnosis [4, 29, 30]. Segmentation 
is the act of assigning voxels that contain an anatomic 
region of interest (ROI) to a resulting volume or mask. 
This stair-step appearance is the result of the voxel 
size and shape and does not represent the true organic 
contours of tissues or structures. Instead, it contains a 
portion of adjacent tissue contours when they happen 
to fall within a given voxel. This stair-step appearance is 
often softened during the creation of 3D printable surface 

meshes from volumetric data. This is because surface 
meshes are essentially “wrapping” the ROI in a fitted net 
composed of triangles which can smooth out the blocky 
voxels.

In this analogy, the net consists of intersections or ver-
tices connected by edges. The space between any three 
vertices is called a face. (Fig.  2A). Most surfaces begin 
with uniform size triangles. Increasing the number of tri-
angles in a mesh, much like increasing resolution of the 
scan, will better approximate curved features. However, 
dense meshes can be computationally burdensome, so a 
balance must be struck between complexity and dimen-
sional fidelity. Note that reducing the number of triangles 
does not always mean that the fidelity will be reduced 
(Fig. 2B).

Background: Algorithms
Studies of digital workflows found that the largest 
influences on model accuracy were scan quality and 
manual segmentation for complex soft tissue cases 
[17, 26, 30–33]. Recent algorithm improvements for 
both segmentation and refinement have increased 
the availability of automated methods [34–36], 
correspondingly increasing the required user knowledge 
of algorithms and ability to validate them. The two 
image processing steps with the greatest chance to 
impact the final model accuracy are mask editing and 
mesh smoothing. Once an initial mask is defined, region 

Fig. 2  Meshing Basics A Solid mesh of a mandible with major mesh features identified. B Decimation of features while maintaining fidelity of 
features
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growing, which examines voxels neighboring a seed 
region, can then be performed to refine the thresholded 
mask [37]. Programs can then semi-automatically refine 
segmentation masks using various methods to locate 
the ROI contours and create the 3D surface mesh. Two 
examples of these methods are active contours [38, 39] 
and region competition [40], which both identify and 
move a contour towards similar nearby voxels while 
minimizing the contour’s deformation. Segmentation 
results in a volumetric ROI, which is then converted 
into a surface mesh. The newly created meshes can 
be smoothed and refined - terms that often overlap. 
Refinement may include any of several methods to 
increase the fidelity of the mask or the mesh in specific 
areas where feature resolution is needed. Smoothing will 
refer to algorithms that work on the mesh to decrease 
quick changes in direction of contours and flatten 
features according to user defined settings. Decimation 
can reduce the number of triangles that make up a 
mesh - decreasing file size and complexity while ideally 
preserving topology [41]. Meshes made from patient 
images tend to be very complex and decimation reduces 
computational load.

Most mesh smoothing algorithms function by 
iterating through the mesh and relocating vertices 
according to mathematical restrictions that optimize 
the mesh to a user-set parameter. However, different 

smoothing algorithms give different results. This will 
typically reduce mesh complexity (increase triangle 
size) in flat areas and increase complexity in areas with 
many geometric features.

The most common smoothing algorithms implement 
Laplacian smoothing [42, 43], a vertex-based tech-
nique that iteratively converges a curve toward a point. 
This typically shrinks the volume of the mesh and pure 
Laplacian implementations do not correct for mesh 
shrinkage. Modifications such as Taubin smoothing 
[44] include a compensating inflation step after each 
mesh shrinkage step. Similar methods such as angle-
based [45], bilateral [46], and curvature [47] have been 
implemented to optimize smoothing in a manner that 
preserves details (sharp points, small radius curvatures, 
or thin walls) in the mesh. Most programs include 
user-selectable options to preserve small features and 
boundaries. Methods of optimally smoothing a mesh 
have been an important topic for a long time and they 
often work extremely well for regular, known or smooth 
shapes. New implementations and optimizations are 
constantly being introduced [48–50] to deal with new 
cases. A summary of popular smoothing algorithms 
with visual examples is located in Table 1. It is incum-
bent on the user to identify the characteristics of their 
software and determine which are most important for 
their clinical use cases.

Table 1  Summary of most common smoothing algorithms used in segmentation software. Images in Example column demonstrate 
implementation of the algorithm before (left) and after (right) implementation.
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Materials & methods
Materials
The example data set was a cranio-maxillofacial CT scan 
used in a 2018 RSNA hands-on 3D printing training 
module [51] (slice thickness 1.0  mm, no gantry tilt, 
512 × 512 FOV, 0.3319 mm pixel spacing, 16-bit, 120 kVP, 
FC80 kernel, and 40  mA). The completely deidentified 
dataset, available upon request, was provided by 
Materialise NV (Leuven, Belgium) and was used after 
receiving approval from the institutional review board. 
All methods were carried out in accordance with relevant 
guidelines and regulations. The dataset features a large 
right mandibular tumor; the tumor is adjacent to both 
a nerve and an impacted wisdom tooth. This file was 
chosen because it contains several ROIs with varying 
degrees of segmentation complexity to challenge different 
aspects of the digital pipeline. All input images were 
in Digital Imaging and Communications in Medicine 
(DICOM) format, and output meshes were saved as STL 
files.

The four programs selected for this study were 
Dicom2Print (3D Systems, South Carolina USA), 
Mimics (Materialise NV; Leuven, Belgium), 3D Slicer 
(Brigham and Women’s Hospital, Massachusetts 
USA), and Simpleware (Synposys; California, USA). 
Throughout, they will be referred to as Programs 1–4 
(not ordered as above) because the goal of the study 
is not to compare the programs themselves. Rather, 
the goal is to use the programs as examples of differ-
ent algorithm implementations and to demonstrate the 
variation that can occur between the workflows of any 
segmentation software.

All comparisons were made between the final STL sur-
face meshes output from each program. Full mesh com-
parisons were made using Magics (23.0, Materialise). 
Linear dimensions and volumetric measurements were 
computed in 3-Matic (19.0, Materialise). Statistics were 
calculated using MATLAB (R2007a, Mathworks).

Methods
Digital workflow for STL generation
The process of creating an STL file from DICOM scans 
follows a similar workflow in all programs, generalized 
into five main steps: (1) DICOM import, (2) Segmen-
tation, (3) Mesh/Model Generation, (4) Smoothing/
Mesh Refinement, and (5) Exporting to STL (or other 3D 
printer-compatible file format). Initial DICOM imports 
all maintained the underlying image volume characteris-
tics (e.g., no alterations were made to the source data). As 
this study was designed to isolate and measure the effects 
of different algorithms applied throughout the software 
workflows, a single user (MF) performed all 5 steps of the 
digital workflow for all conditions in this study (removing 
any inter-user variability).

The terms automatic, semi-automatic, and man-
ual loosely group interventions by the amount of 
user intervention required to complete that step of 
the workflow (Table  2). Regions of interest were seg-
mented in each program, making use of automated 
and turn-key options when available. For automatic 
segmentations with default settings, the program-
assigned Hounsfield unit range was not adjusted. For 
semi-automatic thresholding, Hounsfield unit bounda-
ries (minimum and maximum) were set by the user to 

Table 2  User intervention level at different workflow steps, by program. Automatic designates use of a menu option or built in 
automatic “turn key” feature for the majority of the segmentation step. Semi-Automatic designates segmentation steps that required 
user intervention but made use of built-in operation controls where parameters must be set by the user. Manual designates steps that 
required all or almost all manual user intervention to segment. Final Models after export were used for subsequent calculations.
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be the same between programs. Global thresholding 
based on gray values/Hounsfield units was the prin-
ciple starting point for bone volume segmentation. 
Thresholding identified the initial mask or created 
seed markers starting with bone presets (if available), 
then editing the mask in later steps. Tumor segmenta-
tion was performed by using soft tissue CT presets to 
generate the initial mask and then editing the mask of 
the tumor area from the mandible using mask splitting. 
In some of the programs, it was necessary to manually 
edit the tumor segmentation layer by layer along the 
bone tissue interface. Segmentation was performed 
manually for the nerves in all cases by painting on 
the mask on each layer visible and using interpolation 
when available to connect the mask layers. Threshold-
ing was attempted for the nerves but because of their 
resolution it was not an effective method of segmenta-
tion. At this point, meshes were generated (step 3 of 5 
in the digital pipeline, Fig.  1). This was automatic for 
all 4 programs.

Mesh refinement (step 4, Fig.  1) used smoothing 
algorithms that relocated vertices and/or changed the 
number of triangles (Table  3). Three levels or inten-
sities of smoothing were chosen to best show the 
changes made by each setting: 0) no smoothing, 1) 
low smoothing, and 2) high smoothing. Within the 
semi-automatic intervention level, the amount of user 
interaction and control varied between programs. In 

the final step (step 5, Fig. 1), all meshes were exported 
as STL files, a condition included in the variability 
measurements.

Comparison of STL files across levels of smoothing 
and software programs
A total of 12 models were compared, resulting from 
three smoothing levels (0, 1, 2) performed in each of 4 
programs. Measuring the accuracy of anatomic models 
often presents a conundrum in that ground truth is only 
available when scanning cadaveric or simulated models 
that can be measured separately. Given the inability to 
perform ground truth verification, we evaluated several 
metrics for their ability to measure the agreement and 
disagreement between segmented regions of interest. 
Volume and surface area measurements provide global 
comparisons between models generated by each 
software. Linear measurements provide a means for 
measuring local differences between models.

Metrics for global comparison
A residual volume comparison available in the literature 
[52] was used to calculate tumor volumes for all models. 
These residuals were used to calculate the agreement and 
disagreement volume and percentages between models 
(Eqs.  1 and 2), and pairwise statistics were performed. 
[52, 53]. The agreement (Eq. 1) metric defines the space 
that is occupied by both models and can be used to assess 

Table 3  Smoothing settings for each program given the available smoothing options. Groupings were assigned to generate 
comparable options from disparate software nomenclature and may not represent exact definitions or labels in their respective 
software. The volume and surface areas of the three models generated at each smoothing level were averaged and used for statistical 
analysis.
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accuracy and repeatability in models made by different 
operators or software programs, or smoothing strategies 
[54]. Disagreement (Eq. 2) defines the space occupied by 
only one of the models and not the other.

Surface deviation heatmaps were created for all 
program pairs by calculating the Hausdorff distance, 
which is a measure of the distance from all points on one 
surface to the corresponding points on a second surface, 
to identify all local areas where variation was more 
prominent.

Metrics for local comparison
Local comparisons were taken on the final, digital print-
ready models output by each program, and allowed for 
evaluation of software performance on specific ROIs 
(mandible, tumor, nerve). Linear mandible measurements 
were performed for all models (across smoothing levels 
and software programs) with virtual calipers (Magics 
23.0) using clinical fiduciary markers [55, 56]. To facilitate 
linear measurements of the tumor, parallel measurement 
planes were evenly distributed throughout the tumor 
region by slicing each STL with identical, parallel datum 
planes. The centroid of each planar contour was used to 
measure corresponding X and Y distance to the tumor 
edges on that contour. Similarly, the alveolar nerve path 
was measured using the centroid location coordinates 
of selected coronal slices. Consistent slices were user-
selected and evenly distributed along the nerve models.

Statistics
Comparative analytics between the mandible and tumor 
STL model surface areas, STL model volumes, and nerve 
path centroids were calculated using ANOVA (α = 0.05) 
with Tukey post hoc testing.

Results
Overall observations
The time to process the image volume through all 
segmentation and refinement steps was comparable 
for most of the programs, although Program 4 took 
substantially less time. Manual intervention to some 
degree was required in all cases but the amount of 
intervention varied by program. User time to segment in 
order of program was 4.4 h (Program 1), 4.5 h (Program 
2), 4.6 h (Program 3), and 2.0 h (Program 4).

Initial visual inspection of print-ready models 
showed clear differences in bone contour around 
the tumor, especially at internal soft tissue bounda-
ries. On the inner left wall of the mandible abut-
ting the tumor, there were noticeable differences in 
wall thickness, with areas of apparent absent bone 
as viewed in detail in Fig. 3. Bones with a thin corti-
cal layer are challenging to segment at baseline, and 
the disruption of the cortex caused by the adjacent 
tumor compounded the challenge such that most of 
the programs did not capture all the bone contour 
along the inner wall.

Fig. 3  Volume representations of mandible segmentations with accompanying mask previews. Note the differences in segmentation of the interior 
wall of the mandible and location of the nerve in each cross-section. Models presented are after Smoothing 1 modifications were applied per 
program
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Effect of different levels of smoothing on final model STL
We tested 12 conditions, including 3 levels of smoothing 
within each of the 4 programs. The different smoothing 
levels created no statistically significant differences in 
final models within each program, therefore only results 
of program-to-program comparisons are presented. 
For linear, surface area, and volume measurements, 
dimensions were averaged across smoothing levels 
for each program (values for each program represent 
average(Smoothing0, Smoothing1, Smoothing2). For 
heatmap and intersection (agreement/disagreement) 
calculations, smoothing level 1 models were compared 
between programs.

Quantitative differences using global measurements
Surface deviation heatmaps and residual volume compar-
isons were used to assess global inter-model differences 
for models created using smoothing level 2 in each of the 
four programs. The pair of models with the worst agree-
ment is presented as it demonstrates the best visualiza-
tion in a static setting (Fig.  4B). Union and intersection 
figures (Fig. 4A) highlight variations in the outer contour 
of the tumor between software programs, locating the 
areas of greatest mismatch. Agreement and disagreement 
percentages (Table  4) help to generalize this number, 
with the disagreement metric providing a better sense of 
the degree of mismatch.

Significant differences (p < 0.0005) were found for the 
averaged final models compared between programs, 

for the following parameters: mandible volumes, tumor 
volumes, and the mandible surface area (compared 
separately).

Signed difference heat maps of models from each 
pair of programs illustrated the most problematic 
locations and the differences seen between segmentation 
/ refinement processes. The pair of models with the 
largest differences (Fig. 4B) highlighted the areas of high 
deviation between programs in red (positive deviation) 
and dark blue (negative deviation). While deviation 
magnitudes were less than or equal to 2.06 mm even in 
the worst case, the location of the differences was along 
the nerve path. Both of these location-specific metrics 
draws the user’s attention and scrutiny to regions that 
were determined to be clinically important before the 
segmentation process began.

Local geometric differences
It is not usually possible to find general metrics that 
capture all the relevant features of a case in one or 
two numbers. Additional metrics that can show local 
model variation and features are essential for validating 
processes and maintaining output quality based on 
clinically relevant criteria. They are also often easier 
to compare with the original DICOM data, as linear 
measurements are easily performed using PACS software.

Two point-to-point length measurements on the man-
dible differed with statistical significance using ANOVA 
(α = 0.05) with Tukey post-hoc: Right UCo – Right Go 

Fig. 4  Intersection matrix of tumor models from each program using agreement and disagreement calculations (A), Heatmap using Hausdorf 
distances between two models with largest mismatch, color bar in mm (B)

Table 4  Tumor volume agreement and disagreement, in percent (%), rounded to nearest percent.
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for Program 2 (p < 0.005), and Me-AC for Program 4 
(p < 0.005) differed from the other programs (Fig. 5) but 
these values did not appear to be clinically significant.

Local measurements were particularly needed in 
assessing differences in segmentation of the nerve.

Visual inspection of Intersection metrics and stacked 
nerve segmented models showed local differences in 
undulations of the nerve path (Fig.  6A). The average 
center of each slice was found for both sides and the dis-
tance from each centroid to that average was calculated. 
No significant differences were found in average-to-slice 
differences on the healthy side, likely due to large vari-
ability in the health side distances. Although the centroid 
location of Slice B varied substantially on the healthy 
side, there were no statistically significant difference 
between programs when taking the nerve as a whole. If 
this side were to be part of the clinical intervention, the 
individual results would call for closer examination of the 
nerve path. In contrast, a statistically significant differ-
ence was seen in two comparisons (P2&P4 and P1&P4) 
on the tumor side despite each slice showing differences 
of less than 2.0 mm (Fig. 6B).

While some statistically significant differences were 
found for local, linear measurements of tumors, they did 
not meet the threshold for clinical relevance based on the 

criteria for this anatomic ROI and case study. Specifically, 
the variance in tumor morphology and margins were 
below the expected clinical margin to be taken when 
excising the tumor and the location of the nerve did not 
change in a way that would modify a likely surgical plan. 
This emphasizes the importance of understanding the 
clinical relevance of measurements and not solely relying 
on statistical measures.

Discussion
This study summarized segmentation and refining 
algorithm features, identified several critical points 
in data workflows that can introduce variation, and 
compared methods to measure variation between 
them when applied to the same data set. No single 
measurement was the best method for quantifying 
variation, so it was essential to have both global and 
local analyses of geometric differences. The intersection 
volumes and heatmaps were excellent tools to quickly 
identify the location and size of 3D differences between 
models. Local linear measurements of the affected 
nerve provided additional details that were useful in 
context. Several additional metrics were tried, but the 
combination of heatmap, volume, and disagreement 

Fig. 5  Mandible Linear Measurements. Measurement locations taken (top) and results (bottom). Measurements taken in 3-matic. * ANOVA (α = 0.5). 
Tukey–Kramer Q4,6,0.05 = 4.065
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metrics provided the most useful information for 
understanding variability introduced from algorithmic 
differences in the segmentation / refinement process.

Identifying and quantifying sources of variation is 
especially important when ground truth measurements 
cannot be made, as is the case with a patient’s internal 
anatomy. While cadaveric specimens or polymer models 
can provide independently verifiable measurements, they 
often do not fully replicate the living system. Therefore, 
users need to be able to assess the relative effects of 
different steps in their workflows to validate that it 
achieves the clinical needs of the model, while calling out 
areas where inherent variability will necessitate additional 
scrutiny. Combining available metrics provided enough 
local and global data to more holistically understand the 
variability introduced by different software programs 
and to identify potentially clinically relevant differences 
in model output. This study focused particularly on the 
effects of different software algorithms across programs. 
In addition to comparing algorithms, the same metrics 

can be applied to use of a single program with different 
settings to determine the effect of those changes (as done 
here with different levels of smoothing) or to determine 
the consistency between different users performing 
established procedures (not done in this study).

As outlined in the background, segmentation, 
smoothing, and decimation algorithms each have 
specific effects on the final output. It is critical that 
software programs preserve anatomical accuracy during 
the conversion process when these models are used 
for clinical decisions. Many software packages provide 
documentation of validation results and activities 
performed by the developers to verify their accuracy, 
including but not limited to receiving FDA clearance 
which reviews this factor. However, if these software 
packages are used off label for different, untested 
anatomy, it is incumbent that the user verify that the 
software provides a quality result. Products without FDA 
clearance may complete in-house or third-party testing 
to verify that they are accurate for specific use cases. 

Fig. 6  Summary of deviations in geometry between nerve segmentations. A Differences between programs (P1-P4) across all slices Healthy Nerve 
on left, Tumor Nerve on right. (* = p < 0.05, Tukey–Kramer, Q6,39,0.05 = 4.237)) B Differences between all programs per slice to centroid of each 
sliced based on the centroids of all models per slice alternating Healthy and Tumor Nerve centroid distance distributions for each slice. STL Stacks of 
Healthy (L) and Tumor (R) Nerves and location of slices on each
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In all cases, it is in keeping with both Good Laboratory 
Practices and Good Manufacturing Practices for each 
user or institution to test and validate any workflow they 
use.

Overall, it remains difficult to quantify variations 
in geometry created with different segmentation 
and smoothing techniques. Each anatomic ROI also 
has its own complexities and clinical requirements 
with regards to accuracy. To assess global differences 
between models, the volume and disagreement metrics 
provided quick and very useful overall measures of 
the match between different processes. In addition, 
the intersection models could be used to calculate a 
mismatch volume, surface area, and centroid. These 
could be particularly useful to monitor inter and intra 
user variability by setting a benchmark volume and 
disagreement metric for a standard scan, with users 
required to meet or beat that benchmark.

It is important to note that each metric has challenges 
as well. Volumes can only be calculated on closed 
surfaces, so some regions require additional manual 
intervention or automated repair before this metric 
can be calculated. We expected that the surface area 
metric would be more sensitive than the volume metric 
due to the irregular shapes in this ROI, however it 
was too sensitive to be useful. Small differences in the 
mesh, for example a sharp point or a jagged cluster of 
triangles, greatly affected the surface area with minimal 
real effect. In smooth and regular regions, surface area 
might be a suitable metric with appropriately high 
sensitivity. It is important to remember that even if a 
surface or volume metric shows statistically significant 
differences, those differences are not always clinically 
relevant and must be assessed according to the clinical 
needs determined beforehand for that ROI.

The heatmap view was one of the most robust, 
built-in tools to visualize differences between two 
models. Many mesh refinement programs include a 
heatmap generating function. Unlike other tools, they 
create a visual comparison of the entirety of two surface 
meshes. However, it is only useful in determining 
differences in model generation workflows for a given 
patient model and is not capable of determining the 
absolute accuracy of the surface mesh compared to 
the patient scan. Even so, heatmaps are still extremely 
useful in measuring process quality and repeatability, 
validating workflows, or assessing whether a new type 
of clinical case is within the capabilities of the existing 
protocols. Of note, heatmaps and the disagreement and 
intersection metrics require that both models be placed 
exactly in the same location. This is trivial when using 
a single scan but can be challenging when registering 
multiple imaging modalities. Model registration can 

also sometimes be done using built-in functions after 
surface meshes are created. However, if they are not 
available slice centroids and linear measurements 
may be more robust and effective metrics. The three-
dimensional centroid and inertial coordinate system of 
each mesh can be found as previously described [57, 
58].

As expected, regions of high geometric variation 
occurred in areas of high curvature, in agreement with 
other studies, [59] most notably in the channel formed by 
the tumor impinging on the nerve (Fig. 4B). Variation also 
existed in places susceptible to partial volume averaging, 
where a feature size was similar to or smaller than a given 
voxel size. This was illustrated in this use case in regions 
where there was thin residual cortical bone bordering the 
tumor. Visual inspection of the DICOM images showed a 
blurred boundary between the tumor and bone, implying 
that while the tumor had not breached the bone, it could 
not be segmented using standard thresholding because 
of how few voxels the bone occupied in comparison to 
surrounding soft tissue. When altering segmentation and 
refinement to include thin walls, care must be taken to 
maintain the boundaries of other similar tissues in the 
same area. Automatically processing features like thin 
walls requires specific quality controls or visual checks to 
prevent these features from being accidentally removed. 
While there are many benefits to automated methods, 
default settings are not always sufficient to preserve 
small or unexpected features. In many cases, operators 
must interpret the anatomic regions and modify the 
segmentation masks manually.

Linear measurements were the easiest way to assess 
the difference between specific points of interest. 
Multiple anatomical landmarks were tested for ease of 
repeatability, leading to the selection of those used in 
this study. Fiduciary markers should be selected for both 
clinical relevance and repeatability. If an anatomic region 
has a constant dimension in a critical location for the 
clinical intervention, then point dimensions are an easy 
way to assess accuracy (e.g., diameter of a vessel or length 
from a cut-plane to a nerve). Linear measurements can 
also be compared to clinical measurements made on the 
source imaging study, which provides an excellent means 
of confirming certain key features are accurate between 
the imaging and the model. It was noteworthy that higher 
smoothing levels produced larger differences between 
the models, likely because of the difference in the ways 
each program controlled for mesh shrinkage.

Limitations
This paper investigates the effects of the implementation 
of different segmentation and refinement algorithms 
on the 3D model outputs. To ensure that the effects of 
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the algorithms were isolated, a single segmenter and 
single data set were used. This paper cannot compare 
the magnitude of the algorithmic variation with inter-
user or intra-user variability, between different scanning 
protocols, or in different clinical applications. In clinical 
use, these variables are comingled and often inextricable. 
Further studies identifying and using these parameters 
in the appropriate clinical context will be important 
to determining the overall effect of these algorithmic 
variations. However, this paper provides a baseline for 
understanding the magnitude of algorithmic effects and 
a set of measurement tools that, when used together, 
can provide enough information to make decisions as to 
model quality and process capability.

Risk mitigation
Many studies have focused on dry bone models as their 
gold standard, but it has been established through this 
and other studies [60] that partial volume effects related 
to voxel size are a major cause of segmentation variation 

when soft tissue segmentation is necessary. Multiple 
prior studies have investigated the variations in printed 
anatomical models [10, 32, 55, 59], however, dry bone, 
ground truth studies cannot always account for the 
variability in clinical image volumes. Once a system’s 
physical accuracy and limits are established through a 
ground truth study, the accuracy of a patient-matching 
process typically requires more real-world data.

Minimizing the geometric variation during the 
DICOM to 3D model conversion process requires under-
standing of both the software workflow and the clinical 
needs. It can be thought of as mitigating risk to both the 
process and to the patient. This is best achieved by using 
staff trained well in both anatomy and segmentation pro-
cesses to mitigate both software and inter-user variability. 
Models should always be assessed against patient data by 
appropriately trained engineers or clinicians. A checklist 
of workflow risk mitigations can be used and customized 
to fit each user’s needs (Fig. 7).

Fig. 7  Check list to mitigate risk in digital workflow process. This is not an exhaustive list but provides basic checks for users to ensure that final STL 
files exhibit appropriate fidelity to original patient data
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Software may be cleared by the FDA for specific appli-
cations or intended uses such as segmenting medical 
images to generate 3D digital models for clinical use. 
Some of the programs selected for this study have been 
FDA cleared for specific indications for use (IFU). In that 
case, the software has shown the FDA that it can create 
accurate 3D representations of the anatomy listed in its 
IFU. It also includes sufficient instructions to let trained 
users replicate those results. While it is not necessary 
for clinicians to use FDA-cleared software to design ana-
tomic models, if they do not, they would then have to 
assume the burden of assessing and validating that their 
software is appropriate and accurate for their use cases. 
Validation of the software outputs may be done with 
the assistance of FDA guidance, but algorithm valida-
tion is generally left up to the specific vendor. For these 
reasons, there are benefits to both proprietary software 
where algorithms have gone through a thorough review 
process but whose inner workings are hidden, and open-
source programs where users can see and control algo-
rithm applications but may lack case-specific validation 
data. Regardless of the software choice, this study shows 
that an important aspect of producing models with mini-
mal variability is the user’s understanding of the available 
parameters and how they function within the software 
of choice. Knowing when to apply and tweak specific 
parameters is essential to minimizing geometric vari-
ability between DICOM sources and final STL models. 
FDA clearance or third-party validation of software is 
dependent on the processes used and will not sufficiently 
mitigate risks unless users understand the algorithms the 
software applies and how certain parameters may impact 
the fidelity of the final model.

Clinical relevance
The clinical relevance of geometric deviations in digi-
tal models is case dependent and should be assessed by 
qualified clinicians in reference to the specific procedure 
and anatomical region of interest. The digital conversion 
workflow should attempt to maintain the integrity of the 
original patient imaging data as much as possible. Tumor 
resection surgeries with larger surgical margins may not be 
as affected by small surface geometry errors as other sur-
geries with more stringent requirements. Clinical appro-
priateness criteria have been developed regarding which 
cases would benefit from patient-specific models [8].

To minimize the risk for error during digital model 
creation, it is essential to start with a patient scan of ade-
quate resolution for segmentation. Minimizing voxel size 
while maintaining a sufficient signal to noise ratio is opti-
mal for achieving high-quality segmentable data. Most 
diagnostic CT machines are capable of achieving slice 
thicknesses of less than 1  mm. Most patient-matched 

implants are currently accompanied by a specific scan 
protocol that is optimized for the anatomy around the 
implant location. Unique cases such as trauma, cancer, 
and congenital deformity that present some of the best 
potential for patient-matched technology do not yet 
have standardized requirements and should be evaluated 
based on clinical needs.

Conclusions
Quantifying the variations in model design will be 
essential for patient-matched technology to reach 
maximum potential. This study provides comparisons 
of several metrics that can be used to validate methods 
of preparing patient-matched 3D prints. The software 
packages used here are representative of many that are 
available, all of which use similar mathematical foun-
dations to identify regions of interest, then refine the 
regions to provide the best balance of accuracy and 
complexity. This provides very concordant results for 
regular and slowly varying smooth shapes. Most of the 
model disagreement then occurs during the refine-
ment stages. Each program has features that refine 
models while reducing noise, preserving sharp curves, 
or maintaining the overall model volume. Any of these 
aspects may be desired or undesirable depending on 
the application. Once known, the implication of vari-
ation needs to be assessed by a qualified clinician per 
clinical application and often per case. Using whole-
model metrics that can show the locations of variabil-
ity (e.g. heatmaps and intersections) coupled with local 
slice-based measured (e.g. nerve slice centroids) bal-
ances the amount of measurement effort with informa-
tion provided. For maintenance of a process, aggregate 
measures such as model volume and the disagreement 
metric were effective in identifying when one seg-
mentation/refinement was sufficiently different from 
another to require additional checks. The algorithms 
and metrics described here can facilitation compari-
son of STL model consistency and accuracy regardless 
of workflow or program.

A basic understanding of the functionality of segmen-
tation software is essential for ensuring patient safety 
as medical 3DP continues to expand. Methods used in 
this paper can help 3D printing facilities establish best 
practices for evaluating variation between segmentation 
methods and will allow users to develop optimized work-
flows—ideally accelerating the patient matched instru-
mentation implementation in industry and at point of care.
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