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Abstract
Background Medical three dimensional (3D) printing is performed for neurosurgical and otolaryngologic 
conditions, but without evidence-based guidance on clinical appropriateness. A writing group composed of the 
Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness 
recommendations for neurologic 3D printing conditions.

Methods A structured literature search was conducted to identify all relevant articles using 3D printing technology 
associated with neurologic and otolaryngologic conditions. Each study was vetted by the authors and strength of 
evidence was assessed according to published guidelines.

Results Evidence-based recommendations for when 3D printing is appropriate are provided for diseases of the 
calvaria and skull base, brain tumors and cerebrovascular disease. Recommendations are provided in accordance with 
strength of evidence of publications corresponding to each neurologic condition combined with expert opinion from 
members of the 3D printing SIG.

Conclusions This consensus guidance document, created by the members of the 3D printing SIG, provides a 
reference for clinical standards of 3D printing for neurologic conditions.
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Neurology, And Neurosurgery

Clinical situations for which 3D printing is 
considered an appropriate representation 
or extension of data contained in a medical 
imaging examination: neurosurgical 
and otolaryngologic conditions
Arafat Ali1, Jonathan M. Morris2, Summer J. Decker3, Yu-hui Huang4, Nicole Wake5,6, Frank J Rybicki7 and  
David H Ballard8*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41205-023-00192-w&domain=pdf&date_stamp=2023-11-24


Page 2 of 13Ali et al. 3D Printing in Medicine            (2023) 9:33 

Background
In 2018, the Radiological Society of North America 
(RSNA) three dimensional (3D) printing Special Interest 
Group (SIG) published guidelines for medical 3D print-
ing and appropriateness for certain clinical scenarios 
including congenital heart disease, craniomaxillofacial 
pathologies, genitourinary pathologies, musculoskeletal 
pathologies, vascular pathologies, and breast patholo-
gies [1]. Currently, medical 3D printing is performed for 
neurosurgical and otolaryngologic conditions such as 
pathology involving the skull base, brain tumors unre-
lated to the skull base, and craniosynostosis, but without 
evidence for when 3D printing is appropriate. The pur-
pose of this document is to identify the clinical condi-
tions for neurosurgical and otolaryngologic 3D printing, 
and then vet, vote and publish recommendations on their 
appropriateness.

Methods
The 3D SIG identified clinical situations for 3D printing 
of neurologic conditions, and then provide recommenda-
tions for when 3D printing is considered usually appro-
priate, maybe appropriate, and rarely appropriate [2]. 
Strength of evidence was determined by literature review. 
Consensus among 3D printing SIG members is used 
when there is a paucity of evidence.

The SIG Guidelines Chairperson managed the ratings 
of this document via a vote among SIG members. The 
results of the ratings follow the established 1–9 format 
(with 9 being the most appropriate):

1–3, red, rarely appropriate: There is a lack of a 
clear benefit or experience that shows an advantage 
over usual practice.
4–6, yellow, maybe appropriate: There may be times 
when there is an advantage, but the data is lacking, 
or the benefits have not been fully defined.
7–9, green, usually appropriate: Data and experi-
ence shows an advantage to 3D printing as a method 
to represent and/or extend the value of data con-
tained in the medical imaging examination.

Clinical scenarios were organized by pathologies unique 
to the three main regions of the skull base, extra-axial 
tumors unrelated to the skull base, the updated 2021 
world health organizations (WHO) definitions of intra-
axial brain tumors and craniosynostosis [3–5].  A major 
treatise in neuroimaging served as a guide for search 
terms (Appendix 1), to ensure an exhaustive search [6]. 
Afterwards, an English language PubMed literature 
search and an AUC document structure using standard 
categories for assessment were created. The support-
ing evidence was obtained through structured PubMed 
searches. From each search result the relevant articles 

written in English were curated by consensus between 
physicians with expertise in 3D printing and neuroim-
aging. Publications were deemed ineligible if they solely 
focused on bioprinting, virtual or augmented real-
ity, were not related to human subjects, or were review 
articles without new patient data. All final included lit-
erature and recommendations of this section were vetted 
and approved by vote of Special Interest Group members 
virtually at the November 21, 2022 SIG Appropriate-
ness Committee Meeting. Afterwards, the ratings and 
associated literature were posted on the SIG’s members-
only online forum and comments could be made by SIG 
members for a 2-week period. All included studies were 
graded with a strength of evidence assessment, using as 
a methodology the assignment used by the American 
College of Radiology [2]. This manuscript represents the 
findings and conclusion of the 3D printing SIG and does 
not represent an endorsement by the RSNA.

Results
Table  1 provides evidence-based [7–161] appropriate-
ness ratings, supplemented by expert opinion when 
there was a paucity of peer-review data, to define and 
support the use of 3D printing for patients with neuro-
logic conditions. The citations included in forming the 
appropriateness recommendations and the strength of 
evidence assessment are presented in Appendices 1 and 
2 respectively.

Discussion
Skull base
The skull base is a complex anatomic region that sepa-
rates the intracranial tissues from the extracranial com-
partments with multiple neural and vascular structures 
extending through foramina and fissures. Lesions in this 
region may originate within the skull base itself, from 
intracranial tissues and extend inferior, or from extracra-
nial soft tissues extending superiorly [162–164]. Given 
the complexity of pathology in this region there is no one 
classification for neoplastic and non-neoplastic patholo-
gies. Pathologies of the skull base are typically subdivided 
both clinically and radiographically by anatomic region: 
the anterior, middle, and posterior skull base.

Anterior skull base
The anterior skull base separates the intracranial con-
tent from the nasal cavity. There are many histologic tis-
sue types are present in the anterior skull base. Primary 
tumors of this area may be derived from the bone, para-
nasal sinuses, nasopharynx, dura, cranial nerves, pitu-
itary gland and brain.
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Clinical Condition Rating References
Skull Base: Anterior
Olfactory Groove Meningioma: Simple 3 [7–10]
Olfactory Groove Meningioma: Complex 9 [7–9]
Tuberculum Sella / Planum Sphenoidale Meningioma: Simple (Class I) 3 [7–12]
Tuberculum Sella / Planum Sphenoidale Meningioma: Complex (Class II-III) 7 [7–12]
Esthesioneuroblastoma: Kadish Group A-B 3
Esthesioneuroblastoma: Kadish Group C 8
Sinonasal tumors: Simple 3 [13, 14]
Sinonasal tumors: Complex 8 [13, 14]
Juvenile Nasopharyngeal Angiofibroma (JNA) invading the skull base (stage III) 5
Frontal Sinus Infection invading skull base 2 [13, 14]
Frontal /Ethmoid Sinus Mucocele with Intracranial Extension 5 [14, 15]
Skull Base: Middle
Pituitary Macroadenoma: Simple (Knosp 1–2 or Hardy 0–3 A-C) 2 [9, 16–21]
Pituitary Macroadenoma: Complex (Knosp 3–4 or Hardy 4, D-E) 9 [9, 16–21]
Pituitary Carcinoma 6 [19–21]
Craniopharyngioma: Adamantinomatous 8 [8, 9, 22, 23]
Craniopharyngioma: Papillary 7 [8, 9, 22, 23]
Anterior Clinoid Meningiomas: Simple (Al-Mefty Type II, type A) 1 [11]
Anterior Clinoid Meningiomas: Complex (Al-Mefty Type I, type B,C) 6 [9, 11]
Optic Nerve Sheath meningioma: Simple 2
Optic Nerve Sheath meningioma: Complex (Al-Mefty III) 6
Sphenoid Wing Meningiomas: Simple or Group 1, No Cavernous Sinus involvement 3 [8, 10, 24–26]
Sphenoid Wing Meningiomas: Complex or Group II, Cavernous Sinus involvement 8 [8–10, 24–28]
Nasopharyngeal Tumor: TNM designation T3 or T4 5
Skull Base: Posterior
Cerebellopontine Angle: Vestibular Schwannoma: Simple (Koos Grade I and II) 1
Cerebellopontine Angle: Vestibular Schwannoma: Complex (Koos Grade III -IV) 9 [29]
Cerebellopontine angle tumors, not otherwise specified 6 [10, 30]
Petroclival Meningioma: 7 [31, 32]
Chordoma 5
Chondrosarcoma 7 [33]
Foramen Magnum Meningioma: Simple 2 [10]
Foramen Magnum Meningioma: complex 7 [10]
Chiari I Malformation 3 [34]
Skull Base: Can occur anywhere
Metastasis: Simple 2
Metastasis: Complex 5
Solitary Fibrous Tumor (hemangiopericytoma) 6
Myeloma: Simple 2
Myeloma/Plasmacytoma: Complex 7
Perineural Tumor Spread Intracranially 1
Lymphoma: Simple 1
Lymphoma: Complex 4
Fibrous Dysplasia 8
Hemangioma: Simple 1
Hemangioma: Complex 7
Ameloblastoma 7 [35]
Schwannoma 6 [12, 36]
Encephalocele 6
Meningioma: NOS Simple 3 [10, 37, 38]
Meningioma: NOS Complex 8 [10, 37, 38]
Skull Base: Congenital or Acquired deformity

Table 1 Appropriateness Ratings for Neurosurgical and Otolaryngologic Conditions
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Olfactory groove meningiomas
The olfactory groove is a paired depression in the crib-
riform plate on either side of the crista galli. It transmits 
the olfactory nerves and anteriorly contains a small fora-
men for the nasociliary nerve, a branch of the ophthal-
mic nerve. Olfactory groove meningiomas account for 
approximately 10% of intracranial meningiomas. Because 
of their slow growth and anatomic location, patient with 
olfactory groove meningiomas typically present later 
in the natural history of the disease with larger size of 
tumors, approximately 15% of which extend into the nasal 
cavity [164, 165]. Multiple surgical approaches to remove 
these tumors are used including bifrontal, unilateral fron-
tal, and pterion craniotomies. Endoscopic approaches 
with the aid of an otorhinolaryngologist are also 
described [166]. No formal classification system exists 
for olfactory groove exists. Therefore, a binary distinc-
tion of simple and complex olfactory groove meningioma 

is used in this report. Simple olfactory groove menin-
giomas are defined as well circumscribed tumors mea-
suring less than 4  cm without significant hyperostosis, 
extension into the nasal cavity, brain invasion, significant 
brain edema, or encasement of major vascular structures. 
Complex olfactory groove meningiomas are categorized 
as those measuring greater than 4  cm with irregular 
margins, significant hyperostosis of the adjacent bone, 
greater than 25% calcification, brain invasion, significant 
brain edema, encasement of the anterior communicating 
artery or anterior cerebral artery branches, and/or exten-
sion into the nasal cavity. 3D Printing case series and case 
reports have shown benefit in preoperative planning, 
patient informed consent, intraoperative guidance, short-
ening operative time, and improving anatomic under-
standing during surgical removal [7–9].

Clinical Condition Rating References
Basilar Invagination, Platybasia, Craniocervical or Craniovertebral anomalies 8 [39–46]
Skull Base: Temporal Bone
Inflammatory: Cholesteatoma/Cholesterol Granuloma 6 [33, 47–54]
Infection 1 [48]
Neoplasm: Primary Temporal Bone 5 [48, 52, 53, 55–72]
Dehiscence Semicircular canal 5 [64, 73, 74]
CSF Leak 5 [75–79]
Cochlear Implant Placement 3 [80–83]
Osteoconductive Implant Placement 7 [64, 80, 81, 84–90]
Brain Tumors
Intra-axial Glial Neoplasms 3 [91–103]
Intra-axial Non-Glial Neoplasms 3
Intraventricular Tumors 1
Brain Stem Neoplasms 3
Tumor of the Pineal Region 3
Extra-axial Neoplasms (not elsewhere specified) 2
Meningiomas not related to Skull Base: Simple 2
Meningiomas not related to Skull Base: Complex 7
CNS Lymphoma 2
Lesions affected the cranial nerves (not elsewhere specified) 5 [17, 32, 104]
Craniosynostosis
Simple Single Suture: Open Repair 7 [105–110]
Simple Single Suture: Endoscopic repair 7 [105–110]
Complex Multiple Suture: Open repair 8 [105–110, 26]
Complex Syndromic 8
Metopic bandeau 8
Cerebrovascular Disease
Cerebral Aneurysms 7 [111–145]
Cerebral venous and Dural venous sinus disease 6 [146, 147]
Arteriovenous malformations 7 [148–153]
Vascular simulation (hemodynamics and interventions) 9 [121, 141, 144, 151, 154–157]
Vessel injury 2 [158]
Atherosclerotic disease 2 [159]
Ischemic and hemorrhagic brain injury 2 [160, 161]

Table 1 (continued) 
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Tuberculum sella meningiomas
Meningiomas of the tuberculum sella arise from the 
limbus sphenoidale, chiasmatic sulcus, and tuberculum. 
They comprise approximately 3–10% of all intracranial 
meningiomas and typically present earlier than olfac-
tory groove meningiomas due compression of the optic 
chiasm leading to visual symptoms [167, 168]. Tuber-
culum sellae meningiomas characteristically lie in a 
suprasellar sub-chiasmal midline position resulting in 
posterior and superior displacement of the optic chi-
asm and lateral displacement of the pre-chiasmatic optic 
nerve. Management ideally consists of gross-total resec-
tion without injury to neighboring vital structures. Sur-
gical approaches included extended bifrontal, unilateral 
frontal, pterional, and fronto-temporo-orbito-zygomatic 
(FTOZ) trajectories [169]. Palani et al. proposed a scor-
ing system for classification which factors tumor size, 
optic canal invasion, vascular encasement of the inter-
nal cerebral and anterior cerebral arteries, brain inva-
sion, previous surgery, or previous radiation [169]. Class 
I (0–3 points), class II (4–7 points), and class III (8–11 
points) disease have prognostic implication of surgi-
cal risk, intraoperative vascular injury, subtotal resec-
tion, need for adjuvant radiation, and likelihood of visual 
symptom improvement [170]. 3D printing is beneficial 
in more complex tumors (class II-III) of this region for 
improved preoperative anatomic understanding, intraop-
erative guidance, improved patient informed consent and 
trainee education.

Olfactory neuroblastoma (Esthesioneuroblastoma)
Olfactory neuroblastoma, also referred to as esthesioneu-
roblastoma, is a rare malignant tumor of neuroectoder-
mal origin thought to arise from the olfactory epithelium 
[171]. There is bimodal age distribution with one peak in 
young adult patients (approximately 2nd decade of life) 
and a second peak in the 5th to 6th decades [172]. These 
tumors are most frequently staged using a system pro-
posed by Kadish et al. in 1976 which includes group A: 
limited to the nasal cavity, group B: limited to the nasal 
cavity and paranasal sinuses, and group C: extended 
beyond the nasal cavity and paranasal sinuses into the 
skull base, intracranial compartment, or orbits. Distant 
metastatic disease also qualifies group C disease [173]. 
An additional group was added by Chao et al. in 2001 
including group D: cervical nodal metastases. Treat-
ment usually involves combinations of chemotherapy, 
radiotherapy and surgical excision [174]. Prognosis is 
significantly affected by the presence of distant metasta-
ses. No specific literature exists related to benefits of 3D 
printing for esthesioneuroblastoma; however, it has been 
shown by members of the 3D printing SIG to success-
fully demonstrate relationships of tumor to critical intra-
cranial anatomy and vascular structures in Kadish group 

C tumors. Complex trans-osseous tumors with vascu-
lar encasement and displacement of neural structures 
stand to benefit the most from preoperative planning and 
patient specific 3D Printing.

Sinonasal tumors
Sinonasal tumors are a heterogenous group of tumors 
that originate in the sinus or nasal cavity, of which squa-
mous cell carcinomas are the most common (80%) [175]. 
Adenoid cystic carcinoma is the second most common 
and most likely to recur after surgery (75–90%) [176, 
177]. Perineural tumor spread is the hallmark of ade-
noid cystic tumors which sometimes presents with late 
recurrences. Adenocarcinoma represents 10% of nasal 
cavity tumors. Other rarer tumors include mucoepider-
moid, sinonasal melanoma, and sinonasal undifferenti-
ated carcinoma which is the most aggressive [178]. No 
peer reviewed literature related to 3D printing exists for 
this subgroup presently; however, members of the 3D 
SIG have 3D printed patient specific aggressive sinona-
sal tumors extending intracranially for preoperative plan-
ning and found it beneficial.

Juvenile nasopharyngeal angiofibroma (JNA)
Juvenile nasopharyngeal angiofibroma (JNA) is a benign 
but locally aggressively vascular tumor that may involve 
the anterior skull base and extend intracranially. Patients 
are typically young males who present with epistaxis or 
chronic otomastoiditis due to obstruction of the Eusta-
chian tube. The staging system proposed by Sessions et 
al. is the most commonly used and divides tumors into 
three stages with extension into the skull base qualifying 
stage III disease [179]. There is no peer reviewed litera-
ture related to 3D printing and JNA.

Frontal sinus infection
Frontal sinus infection can be complicated by intracra-
nial extension if left untreated or in immunocompromise 
patients. Intracranial complications include the forma-
tion of brain abscesses, subdural empyema, meningi-
tis, cavernous sinus thrombosis, or osteomyelitis [180, 
181]. While most infectious etiologies do not merit a 3D 
printed model, Jung et al. published a case report where 
3D printing was used for reconstruction of the frontal 
bone after severe infection of the frontal sinuses [182].

Frontal sinus mucocele
A mucocele of the paranasal sinus is an accumulation of 
mucoid secretion and desquamated epithelium within 
the sinus resulting in benign cyst-like expansion of the 
sinus walls. Approximately 60–89% occur in the frontal 
sinus, followed by 8–30% in the ethmoid sinuses, and less 
than 5% in the maxillary sinus [183]. The treatment of 
mucoceles is surgical to drain the mucocele and ventilate 
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the sinus and prevent recurrences [184]. Sanchez-Gomez 
published a case series of 7 patients where 3D printing 
using stereolithography was used to improve preopera-
tive planning, patient specific anatomic understanding, 
and reducing intraoperative time [15].

Middle skull base
The central skull base represents the junction between 
the intracranial contents, the bone of the skull base, the 
orbits, the paranasal sinuses, and the suprahyoid neck. It 
contains the anterior clinoid processes, sphenoid wings, 
sella, cavernous sinus.

Pituitary macroadenoma
Pituitary adenomas are relatively common tumors arising 
from adenohypophyseal cells and account for 10–15% of 
all intracranial neoplasms [185]. Pituitary adenomas have 
been classified according to the clinical, radiological, and 
endocrinological findings, tumor size, and invasion of 
adjacent structures. Pituitary adenomas are divided into 
microadenomas and macroadenomas by a cutoff size of 
10  mm. Pituitary macroadenomas (greater than 1  cm) 
often extend into the suprasellar compartment giving 
rise to a classic “snowman” or “Figure of 8” morphology. 
Invade the cavernous sinus occurs in 6–10% of cases, 
limiting surgical resectability [186, 187]. There are 3 main 
classifications of Pituitary Adenomas; Hardys classifica-
tion which incorporates bone invasion inferiorly into 
the sphenoid sinus (grade 0–4) and suprasellar involve-
ment (grade A-E) and Knosp classification of cavernous 
sinus invasion (Grade I-IV) [188–190]. 3 case series, 1 
case report, and 1 randomized control trial of 20 patients 
demonstrated improved preoperative planning, intraop-
erative guidance, patient education, blood loss and oper-
ative times [16–18].

Craniopharyngioma
Craniopharyngiomas are midline suprasellar tumors 
which are relatively benign (WHO grade I), but locally 
aggressive. They originate from epithelial remnants of 
Rathke’s pouch and are a formidable neurosurgical resec-
tion as they are intimately associated with the hypothala-
mus and optic apparatus. They are classified by location 
as retrochiasmatic, prechiasmatic, intraventricular (third 
ventricle), and intrasellar. Several surgical approaches 
have been created depending on the age of the patient, 
location, and size of the tumor [191]. Pathologically 
there are two subtypes, papillary (PCP) and adamantino-
matous (ACP). ACPs are more common in children are 
composed of cystic “motor oil-like” components as well 
as solid components with frequent calcification. In con-
trast, PCPs are more common in adults, rarely calcified, 
mostly solid, and well-circumscribed with clear cyst con-
tents [192]. Advancements in imaging have led to several 

described classification schemes, but no single scheme 
is widely used [191, 193–196]. Surgical goals must be 
balanced with the potential morbidity of hypothalamic 
or optic apparatus injury; hence, preoperative under-
standing of tumor anatomy is crucial. Guo published a 
case series of 355 craniopharyngiomas, 45 of which had 
3D printed models used for preoperative planning [22]. 
This study demonstrated improved preoperative ana-
tomic understanding which aided in choosing surgical 
approach. Other smaller case series demonstrate similar 
findings [8, 9].

Anterior clinoid meningiomas
Anterior clinoidal meningiomas arise from the meningeal 
covering of the anterior clinoid process. These menin-
giomas are distinct from the more commonly discussed 
sphenoid wing meningiomas with unique anatomic land-
marks, surgical outcomes, and clinical experience [197]. 
They are divided further into 3 subcategories based on 
their relation to the anterior clinoidal process and ease of 
resection.

Type I - Clinoidal meningiomas originate from the 
inferomedial surface of the clinoidal process proximal to 
the distal carotid ring.

Type II - Clinoidal meningiomas originate from the 
superolateral surface of the clinoid process, leading to 
widening of the sylvian fissure.

Type III – Clinoidal meningiomas originate at the optic 
foramen and extend into the optic canal.

Preoperative imaging has suboptimal sensitivity for 
detection of tumor involving the clinoid process (approx-
imately 75%) and the clinoid process is typically removed 
[198]. Limited literature exist surrounding the utilization 
of 3D printing in preoperative planning for these menin-
giomas [9, 11]. However, members of the 3D printing 
SIG have printed patient specific models in this region 
for preoperative planning. Given the close association 
with the cavernous sinus and intracranial internal carotid 
artery, 3D printing maybe appropriate for this disease 
process.

Optic nerve sheath meningioma
Optic nerve sheath meningiomas are rare benign neo-
plasms originating in the arachnoid cap cells of the 
meninges surrounding the optic nerve. While benign, 
they are a significant source of morbidity due to loss of 
vision, disfigurement from proptosis or potential opera-
tive morbidity. While these tumors are rare, they account 
for one-third of meningiomas involving the orbit [199]. 
Surgical resection carries the risk of blindness, creating 
the need to balancing growth of the tumor vs. potential 
morbidity from resection. These tumors are typically uni-
lateral except in the context of neurofibromatosis type 2 
[200]. These are slow growing tumors, therefore surgical 
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management is only considered in situations where tissue 
diagnosis is required, tumor demonstrates progressive 
posterior extension into the intracranial compartment, 
complete vision loss is pre-existing and en bloc resec-
tion is possible, or in patients who have significant orbital 
disfigurement [201, 202]. There is no peer reviewed lit-
erature related to 3D printing and optic nerve sheath 
meningioma. Members of the 3D SIG have created mod-
els for Al-Mefty category III tumors and found it to be 
useful for preoperative planning and intraoperative guid-
ance [197].

Sphenoid wing meningioma
Sphenoid wing meningiomas account for 11–20% of 
intracranial meningiomas. The location of the tumor has 
been further divided into 3 groups: (1) medial; (2) mid-
dle; and (3) lateral. En plaque meningiomas occur in this 
location commonly and are characterized by sheetlike 
dural thickening and bone hyperostosis. Management of 
meningiomas in this location can be difficult, especially 
medially, due to proximity of neurovascular structures 
traversing the adjacent neural foramina and the adja-
cent cavernous sinus contents. There are varied surgical 
approaches beyond the pterion craniotomy, therefore 
preoperative localization of the anatomic extension of the 
tumor is important [203, 204]. Extent of resection and 
morbidity can depend on cavernous sinus involvement, 
encasement of the anterior cerebral or middle cerebral 
arteries, orbital apex involvement, and bony hyperosto-
sis [27, 205–207]. 3D printed models have been used in 
several case series which demonstrated improved pre-
operative planning, selection of surgical approach, ana-
tomic understanding of critical neurovascular structures 
in relationship to tumor, and patient education [8, 9, 24, 
25, 28].

Nasopharyngeal carcinoma
Nasopharyngeal carcinoma is the most common tumor 
of the nasopharynx for which radiation and chemother-
apy are the primary modalities for therapy [208]. Mem-
bers of the 3D SIG anecdotally report clinical utility for 
tumors with involvement of adjacent bony structures or 
those with intracranial extension, TNM designations T3 
and T4 respectively [209]. There is no peer reviewed lit-
erature describing the use of 3D printing for nasopharyn-
geal carcinoma.

Posterior skull base
The clivus forms the anterior aspect of the posterior skull 
base and extends inferiorly to the foramen magnum. 
Laterally the posterior skull base is formed by the poste-
rior surface of the petrous portion of the temporal bone 
and the mastoid portion of the temporal bone. Detailed 
knowledge of the foramen and the neurovascular 

structures traversing them is essential in surgical man-
agement of tumors in this location.

Meningiomas
Posterior cranial fossa meningiomas account for approxi-
mately 8–10% of all intracranial meningiomas [6]. There 
are few published reports describing the benefit of a 3D 
printed model for resection of posterior fossa meningio-
mas in the petroclival region. As our ability to visualize 
and accurately segment skull base structures improve, we 
anticipate that the need and utility of such models will 
increase.

Vestibular schwannoma
Vestibular schwannoma, also known as acoustic schwan-
nomas or acoustic neuromas, are benign tumors which 
comprise the vast majority of cerebellopontine angle 
masses (~ 85–90%) [6]. There are few published reports 
for the use of 3D printing for vestibular schwanno-
mas [17]. However, we have anecdotally noted a high 
demand for these models at our institution for presurgi-
cal planning and surgical trainee education. Specifically, 
these models have been used to determine the surgical 
approach and proximity of the tumor with cranial nerve 
VII.

Chordomas
Chordomas are a locally aggressive primary malignant 
neoplasm which occur at the midline, arising at any point 
along the course of the primitive notochord. Spheno-
occipital chordomas, also known as clival chordomas, are 
located intracranially at the midline and are less common 
compared to sacral or spinal chordomas. Endoscopic 
and multiple open surgical approaches are described in 
the management of clival chordomas [210]. There are no 
published reports for 3D printing for planning of surgi-
cal resection of clival chordomas. The need for extensive 
drilling of bony structures in the skull base during the 
surgical resection of these tumors suggests preoperative 
visualization and simulation with a patient specific 3D 
printed model could add value.

Petrous apex
The petrous apex is a pyramidal shaped bone of the mid-
dle skull base which is formed by the medial aspect of 
the temporal bone. Diseases affecting the temporal bone 
are wide ranging, many of which are amenable to open 
or endoscopic surgical techniques. Few reports currently 
exist for lesions of the petrous apex including cases of 
chondrosarcoma, cholesteatoma, and a petrous apex cyst 
[33, 47, 50]. All reports reaffirm that 3D printed models 
of petrous apex pathologies are accurate, aid in preopera-
tive planning and improve patient safety.
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Temporal bone
Anatomy of the temporal bone is complex and surgical 
procedures involving the temporal bone are technically 
challenging. The ability to plan and rehearse procedures 
on a life-like model are invaluable to the field of otologic 
surgery. A plethora of reports demonstrate the feasibility 
of temporal bone models produced by 3D printing tech-
nology to be both accurate, cheap and reproducible.55,70 

48,50–53,58−69,71,72,74 3D printed temporal bone models have 
proven both qualitatively and quantitatively accurate 
compared to temporal bone anatomy visualized on imag-
ing as well cadaveric specimens [48, 52, 72, 74].

Ossicular chain
The ossicular chain is comprised of the malleus, incus 
and stapes bones within the middle ear cavity. Size com-
patible 3D printed biocompatible materials for use as 
prosthetics have been shown possible in cadaveric mod-
els [85, 90]. However, this application for 3D printing 
has not been proven in case reports or randomized con-
trolled trials.

Labyrinth
One of the emerging indications for patient specific mod-
els of the temporal bone is pre-operative planning for 
cochlear hearing device implantation. Minute structures 
of the inner ear, although challenging to segment and 
print in true size, have been demonstrated to be feasible 
in multiple studies [81, 84, 86, 87]. Patient specific models 
for this indication have been shown to reduce operative 
time, reduce overall cost, increase surgical precision and 
reduce complication in a small case series for implanta-
tion of a cochlear hearing device [82]. Authors have used 
both 3D visualization software and 3D printed models for 
volumetric studies for various types of inner ear patholo-
gies such as incomplete partition and enlarged vestibular 
aqueduct syndromes [88]. In a single study, authors sug-
gest the feasibility for creating custom implants for the 
indication of superior semicircular canal dehiscence [89].

Cholesteatoma
Cholesteatomas are an overgrowth of epithelial cells 
occurring the middle ear cavity and temporal bone which 
occasionally require surgical removal. CT imaging is the 
primary preoperative imaging tool guiding preoperative 
planning. The addition of a 3D printed model for surgical 
planning has been shown accurate in reproducing anat-
omy, particularly for patients with complex anatomy [54].

Congenital or acquired deformity of the skull base
Basilar invagination, platybasia and other cranioverte-
bral anomalies, congenital or acquired, can be challeng-
ing to manage operatively. Multiple case reports and case 
series demonstrate that rehearsal of individualized skull 

reconstruction with an anatomic model has been shown 
to improve surgeon confidence, reduce operative risk and 
improve outcomes [26, 39–46].

Brain tumors
The global incidence of primary malignant brain tumors 
in adults is approximately 3.7 per 100,000 for males and 
2.6 per 100,000 for females, with even higher rates in 
developed countries [211]. 3D printing technology has 
been used in preoperative planning for tumor resections 
and for radiosurgical guides.91–100 101,102,151 Unlike resec-
tion of tumors elsewhere in the body, outcomes from 
brain tumor resection are heavily surgical performance 
based. Literature supporting improved performance with 
3D printed models used for preoperative planning and 
simulation justify their cost [91–103].

Cerebrovascular disease
3D printed vascular models are often limited to treat-
ment of complex intracranial vascular pathologies for 
clinical decision making. However, there is a large body 
of evidence reporting the use of 3D printed vascular 
models, both simple and complex, for education and 
surgical simulation.111–153,158−161 Few authors have uti-
lized 3D printing for pre-surgical planning of arteriove-
nous malformation resection [150, 153]. Models of dural 
venous sinuses and cerebral venous anatomy are not well 
reported in the literature; however, fabrication of these 
models are feasible.

Conclusion
This document provides clinical appropriateness for 3D 
printing for patients with neurosurgical and otolaryngo-
logic conditions. Adoption of common clinical standards 
regarding appropriate use, information and material 
management, and quality control are needed to ensure 
the greatest possible clinical benefit from 3D printing. 
With accruing evidence for utility and value in 3D print-
ing, it is anticipated that this consensus document, cre-
ated by the members of the 3D printing Special Interest 
Group, will provide information that can be used for 
future clinical standards of 3D printing.
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